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Abstract--Contact melting a material by a moving heater of arbitrary shapes with non-isothermal working 
surface is systematically investigated. A pressure exerted by the heater continuously squeezes the molten 
layer out of the close-contact region. The melting material has non-linear physical properties including 
temperature dependent conductivity, viscosity and non-Newtonian behaviors. By using a scale analysis 
momentum and energy equations are simplified. An iterative numerical procedure based on a boundary 
elements method is developed. Computed results show a good agreement with the analytical solutions that 
are available for a parabolic isothermal heating surface and constant physical properties. Influences of 
temperature distributions along the working surface and lengths of the heater on the thickness of the 
molten layer are found. A comparison between these factors is made. An appropriate distribution of the 

heat source within the heater is also proposed. 

1. INTRODUCTION 

Melting a solid by a close contact with a heating 
surface takes place in numerous natural and tech- 
nological processes. Two types of applications can be 
categorized [1]. In one group the material lies on the 
heating surface and i:~ pressed against it by some exter- 
nal force such as the weight of melting material. This 
situation occurs when the unfixed phase-change 
material melts in an enclosure. The other group of 
applications involves a moving heater melting its way 
through the surrounding solid. This phenomena arises 
in such fields as geology, nuclear technology, welding, 
oil industry and thermal drilling of rocks and glaciers. 

Thermal drilling :is commonly recognized as the 
most effective method to bore glaciers [2, 3]. Drilling 
rocks and soils by a thermopenetrator [4, 5] is a rela- 
tively new method in mining engineering. It has 
advantages over a traditional rotary drilling. For 
example, rock fracturing, debris removal and wall 
stabilization are accomplished in a single integrated 
operation. 

Theories of contact melting have been developed 
since the last decade. Melting inside the capsules for 
energy storage was investigated by Moore and Bay- 
azitoglu [6], Roy and Sengupta [7] and Saito et  al. [8]. 
Bejan [9], and Tyvand and Bejan [10] studied contact 
melting induced by friction. They accounted for melt- 
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ing ice due to a decrease in the melting point by apply- 
ing an external load. Enhancement of heat transfer 
and reduction of thermal resistance in the molten layer 
by machining slots on the heating surface were ana- 
lytically, numerically and experimentally investigated 
by Saito et  al. [1 l]. Contact melting under rotation 
conditions was studied by Taghavi [12]. M oallemi and 
Viskanta [1, 13] used a marching-integration pro- 
cedure to obtain complete numerical results of contact 
melting for a moving horizontal cylindrical heater. 
Measured surface temperatures of the heater and 
melting velocities under rectangular and circular cyl- 
inder-shaped heater are provided by Webb et  al. [14]. 

Although previous investigations highlight the 
main characteristics of contact melting, the effects of 
temperature-dependent properties were ignored. Heat 
conduction to the surrounding solid was also neglec- 
ted. This is only valid when the latent heat is greater 
than the sensible heat in solid. Heat conduction in the 
heater was not investigated. The influence of the shape 
of heating surface and temperature distribution on 
it was not analysed. Although Fomin and Wei [15] 
accounted for shape factor and temperature depen- 
dent properties, the heating surface was assumed to 
be isothermal. 

In the present study a general mathematical model 
of contact melting of a material with temperature- 
dependent physical properties is developed. The 
molten material is considered to be a non-Newtonian 
liquid of the Ostvald-de-Waele type, which was exper- 
imentally confirmed for a molten rock or magma [16]. 
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NOMENCLATURE 

B Newtonian viscosity = exp(E/RT~) 
B0 scale for B 
Cc solid-to-liquid specific heat 

ratio = cJq 
Ch transverse-to-tangential length scale 

ratio in molten layer = ho/1 
ct liquid specific heat 
c~ solid specific heat 
E activation energy 
h dimensionless molten layer 

thickness = h/ho 
h0 characteristic thickness of molten layer 
j heat source distribution function 
J function defined by equation (27) 
k conductivity 
k, dimensionless liquid 

conductivity =/q/ko 
k0 characteristic conductivity of liquid 
K0 modified Bessel's function of the 

second kind and zeroth order 
k~ dimensionless solid 

conductivity = fC~o/ko 
k~0 characteristic conductivity of solid 
I longitudinal characteristic length 
L latent heat for melting 
M, Mi points on boundary and interior 

region f~ 
n flow index describing non-Newtonian 

fluid or direction normal to the surface 
p liquid pressure 
Pe modified solid Peclet number = Vl/cq 
Pe~ modified liquid Peclet 

number = VPJ/(~IpO 
q heat flux conducted to solid at melting 

surface 
q.  heat flux on the working surface 
r polar coordinate 
r position vector 
R gas constant 
Re modified Reynolds number = psVl/llo 
Ste Stefan number = L/[q(T~-  T~)] 
T temperature 
Two characteristic surface temperature of 

the heater = T ~ -  (Tin- T~o) 
ChPel( Ste + C~) 

T~ ambient temperature 
V dimensional melting speed 
v0 characteristic tangential 

velocity = VlpJ(hopO 

V~ 

V n 

W 

X 

X ,  

z 

dimensionless tangential 
velocity = ~jVo 
dimensionless transverse 
velocity = 6,pt/(psv) 
external load pressure 
Y~/l, as shown in Fig. 1 
location of the stagnation point 
Z/l, as shown in Fig. 1. 

Greek symbols 
al liquid diffusivity = ko/(clPl) 
cts solid diffusivity = kso/(csps) 
a~, a2 functions determined in equation (13) 
F generating line, as illustrated in 

Fig. 1 
A(x) Dirac delta function 

tangential coordinate = ~/l, as shown 
in Fig. 1 

~. tangential location where 0p/0~ = 0 
q transverse coordinate = q/h, as shown 

in Fig. 1 
qo transverse coordinate where 

~v~/O~ = 0 
0 dimensionless solid 

temperature = ( T -  T~)/(Tm- T~) 
0 Kirchhoff transformation of solid 

temperature 
01 dimensionless liquid 

temperature = (T t -  Tm)/(T,o- Tin) 
# dimensionless dynamic 

viscosity =/~/P0 
#o scale for viscosity = 

2(n-- i) n--I 
Bo ( Pe,/ Bo ) 5 ~ T  ( V p,/ lp,)2-~-, 

p density 
E surface, as illustrated in Fig. 1 
f~ domain of sofid, as illustrated in Fig. 1 
flh domain of heater. 

Superscripts 
~ dimensional quantity. 

Subscripts 
h heater 
1 liquid 
m melting 
s solid 
w working surface 
1, 2 end points, as illustrated in Fig. 1. 

The heating surface of an arbitrary shape is non-iso- 
thermal. It has a hole in the center for some appli- 
cations [2-5]. The appropriate heat sources within the 
heater are proposed. 

2. SYSTEM MODEL AND ANALYSIS 

A schematic sketch of  a contact melting induced by 
a heater moving at a constant speed V is illustrated in 
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Fig. 1. Schematic sketch of the model and coordinate system. 

Fig. 1. The solid occupies a semi-infinite domain f~. 
Boundaries of solid consists of a surface Zm, where 
the phase change occurs, and a surface Xt determined 
by different melting techniques. The surface of the 
heater can be either an axisymmetric surface Zw gen- 
erated by a curve F,, or a cylindrical surface Zw having 
a boundary curve Fw. The axisymmetric (r, z) or Car- 
tesian (x,y,z) coordinate systems, therefore, are 
attached to the moving heater. The z coordinate 
directs upwards, with the solid moving in the positive 
z-direction. Since tihe length in the y-direction is con- 
sidered sufficiently larger than those in x- and z-direc- 
tions, respectively, the model becomes a two-dimen- 
sional case in coordinates (x,z). A local two- 
dimensional curvilinear orthogonal coordinate system 
(~, ~/), which is often used in the boundary layer prob- 
lem, is applied. The coordinates t /=  0, 1 are fixed on 
the working surface of the heater and the melting 
surface, respectively. The primary assumptions made 
are the following : 

(1) The melting rate or migrating speed V is con- 
stant relative to the heater. This is confirmed by Moal- 
lemi and Viskanta [1] by measuring migrating vel- 
ocities in melting solid n-octadecane. 

(2) A relatively thin molten layer [1] and high melt- 
ing velocities (Pe >', 1) are treated due to a high force 
exerted and heat transferred from the heat source. 

(3) Viscosity, and thermal conductivities in solid 
and liquid are functions of temperature. The molten 
thin layer can be a non-Newtonian fluid [16]. 

2.1. Governing equations in the molten layer 
Governing equations are expressed in curvilinear 

coordinates (~, r/) which are related to Cartesian coor- 
dinates (x,z) by (see Fig. 1) 

X=Xh(~)+hCr, rl~ g = Zla(~)- h f h r / ~ (  h (1) 

where the tangential and transverse length scales of 
the molten layer are chosen to be a typical size of the 
heater l and thickness of  the thin layer h0, respectively. 

The scale for tangential velocity is Vo = Vlps/plho that 
is determined by a mass balance in the molten 
material, while the scale for the transverse velocity in 
the melt is VpUpl. The fluid layer is driven by the 
pressure gradient, which is of the same magnitude as 
the viscous force. This leads to ho = [Vl21~opd(plw)] 1/3, 
where the characteristic viscosity is #0 = Bo(vo/ho) "-1. 
As a consequence, the ratio of the characteristic thick- 
ness of the molten layer to the tangential length scale 
Ch = ho/l = (Bo/w)1/(1.+ 1)(Vps/lpl)./(2.+ 1). As it was 
justified theoretically and by the experiment [1, 3, 4, 
14] for contact melting of different materials par- 
ameters Re, Ch << 1. The continuity and momentum 
equations after neglecting the terms of O(Re), O(Ch) 
reduce to 

1 ~ Ov~ 
x~ a,1 (hx~v~) + T~ = o (2) 

dp 1 c~ [ ~  1(gv~('-l)~gv~l 
- h ( 3 )  

where power v = 1 for axisymmetric heating surface 
and v = 0 when the heating surface is two-dimensional 
in Cartesian coordinates (x, z). The associate bound- 
ary conditions of an accuracy of O(Ch) are 

v c = 0  v , = 0  a t r / = 0  (4) 

dxh 
vc=0  v~-  d~ atr/= 1. (5) 

Pressures at the exit points of the molten layer are 
denoted by P(~I) = Pt and P((2) = P2, respectively. 
The force balance between the load exerted by the 
heater on the thin layer and stresses in the molten 
layer with an accuracy of O(Ch) is governed by 

1 ~ dXhj,~ 
jzhp~-u~. = 1. (6) IXhl 

The ratio of heat generation due to viscous stresses to 
conduction is generally very small and is around 10 -4-  
10 -3 for contact melting with a high-energy load. 
Hence the energy equation reduces to 

/ 00t v, 001\ 1 (7) 

where temperature is scaled by (Two-Tin)= 
(Tin- T~)ChPet(Ste+ C~). The associate boundary 
conditions are 

01=0. f (0  a t q = 0  0~=0  a t q = l  (8) 

wheref(O determines the temperature distribution on 
the working surface of the heater. The Stefan bound- 
ary condition representing an energy balance at the 
melting surface with an accuracy of O(Ch) yields 

OOiotl Ste+l Cc / /~ , dx  h ) -k l  t,~'ten~-~ + C~qh. (9) 

where the scale for heat flux is q0 = k~o(T~- T~)Pe/I 
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as it can be estimated from the energy equation in 
solid. In equation (7) a condition for a vanished vc at 
the stagnation point ( = ( ,  is used. 

2.2. Determination of conduction to solid 
In order to calculate heat conduction to solid, a 

solution of the energy equation in solid is needed. The 
energy equation is 

( e s -  1'] 00 
V20-PeO00 = Pe ks ]~3z (10) 

where the dimensionless temperature is defined by the 
Kirchhoff transformation as 

i0 f 0 = k~d0/ kd0 
,,/0 

[17]. An introduction of this dependent variable can 
avoid certain difficulties associated with the tem- 
perature-dependent conductivity ks. Boundary con- 
ditions are 

0 = 1 one2 m ; 0 = 01 o n e  I (11) 

Solid temperature far from the working surface 0 
0 a s R ~  oo. 

A solution of equation (10) in an integral form can 
be presented as 

0(M~) fr  00 Pc = qb e T~'-z) dF 
m ~r El 0~'~ 

q- f r  (Ol--1)Fe~(Z'-Z)0q~ 
, L 0n 

s - P e  q~e ~-(~'-~) - 1  dO M i ~ f l  (12) 

where the right-hand side is a sum of single- and 
double-layer potentials. 

For  2D and axisymmetric cases the surface integrals 
over surfaces 2 m ,  2 1  in equation (12) are replaced by 
line integrals along their generating curves, Fm and 
F1, respectively. The fundamental solution ~b satisfies 
the equation VZ4)-(Pe/2)2(o = 0. In a 2D case, 
the fundamental solution is qS(M, Mi) = 
Ko{[(X-Xo)2+(Z-Zo)2]l/2pe/2}/27z. For an axi- 
symmetric surface the fundamental solution in cyl- 
indrical coordinates can be obtained from a 3D model 
as proposed in [18] for the Laplace equation. In our 
case the fundamental solution yields 

r~ f ~ P e t  2 2 2 2 - i / 2  r ,2exp  ~ - - ~ - ) [ ( ~ 2 - - t  ) ( t - - c t t )  ] dt ~b = rcj~, 

(13) 
where el = [(r-- ri) 2 + (2" - -  202] 1/2 and ~2 = [(r + ri) 2 -t- 
(Z - -  Zi)2] 1/2 . 

Based on a potential theory, equation (12) by taking 

a one-side limit from an interior point in solid to the 
boundary F1 + Fm leads to 

o~+r, a n )  

= ( 1 - 0 1 )  e T(z' z) ~?n 0 (eT(Z, z)) dF 
'1 

+Pe q~e 2(z' z) ~ - - 1  df~ 

{ 1 0  Mi on Fm 

+ 1 ~  Mi onF~. (14) 

Equations (12) and (14) provide a general description 
of temperature fields in bulk solid and heat flux at the 
melting surface, respectively. It reveals that tem- 
perature and heat flux on surface Em are not affected 
by thermal conditions on surface El if the Peclet num- 
ber Pe >> 1. In this case, the surface integrals over F, 
in equations (12) and (14) can be ignored. The heat 
flux across the melting surface can be represented as 

1 7nn rm q = - - P e  ksd®. (15) 

When the shape of the melting surface is known equa- 
tions (12) and (14) are solved numerically by iter- 
ations. It should be noted that, although the domain 
f~ is semi-infinite, temperature perturbations are con- 
centrated in the thermal boundary layer, whose thick- 
ness is of O(1/Pe). Discretization of f~, therefore, does 
not bring difficulty. 

2.3. Heat conduction in the heater 
The heat conduction equation in the heater and 

associated boundary conditions on its working surface 
yield 

V2Oh = j  (16) 

Ohl~w = khChOlln=0 (17) 

0®, (18) 
a~ }I.=0" 

On the boundary E0 which is not in contact with the 
molten material (Fig. l )  the insulation condit ion is 
assumed in order to avoid energy dissipation. That is 

8®h 
On ~0 = 0. (19) 

In equations (16)-(18) the scales for the heat source 
energy j and temperature O h of the heater are chosen 
as j0 = ko(Two- Tm)/(12Ch) and Th0 = jol2/kh since heat 
fluxes on the left and right hand sides of the equation 
(18) should be of the same order. With the accuracy 
of O(KhQ) boundary condition (17) can be sub- 
stituted by Oh = 0. The latter provides a separation of 
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the heat conduction problem in the heater from the 
heat and mass transfer processes in the molten layer. 

A solution of the equation (16) by substituting 
boundary conditions (17)-(19) yields [ 18] 

OOh Oh(Mi) = Iz. ( -  --~n )d~(M, Mi) d~" 

+ Iz.+Xo O h ~  dE 

- fn 4,(m, Mi)j(m)df~, Mie~"~h (20) 

where fundamental solutions of Laplace equation in 
2D and 3D cases are ~b(M, Mi )=  (1/2n)ln(l/r), 
d~(M, Mi)=(1/4n)(1/r), respectively. In an axi- 
symmetric case ~b(M, Mi) = (r/n)K(1-c~/ct~)/o~2, 
where K is a complete elliptic integral of the first kind. 
Taking point M~ to the boundary and accounting for 
the jump of the second integral on the right hand side 
of equation (20) yields a boundary integral equation 

= Ic~p(m, mi)jdn+Oh(mi)/2. (21) 

When the heat source function j in equation (21) is 
known the heat flux on the working surface can be 
calculated from equation (21). This problem can also 
be treated as inverse problem where j is an unknown 
function and the heat flux on the working surface is 
calculated from the solution of heat transfer problem 
in the molten layer. It can be assumed that the heat 
source is concentrated on the segment AB of the 
straight line x = x ,  (Fig. 1) and j  is approximated by 
a linear function : 

j ( x , z )  = 

{IC(z-~-)o-Bl_-~A(x-x . )  ifz~[A,B] (22) 

ifz ¢ [A, B] 

where the unknown parameter C satisfies an 
inequality 0 <~ C ,.~ 2/(B 2-A2). The function j is 
chosen to satisfy the conditions : (a) j > 0 since only 
source exists in the heater; and (b) ~n~jd~ = 1 that 
indicates a constant total capacity of the source. 

The inverse problem is formulated as a problem of 
minimizing the functional 

mindp(C):f~:,[qw(C)-(~ O®'~Orl ],=o]]2 dE. 

(23) 

It can be shown that the inverse problem for the con- 
vex uniform functional (23) on the chosen set of vari- 
ables C has the unique solution [19]. 

3. METHOD OF SOLUTION 

3.1. Distributions of velocity and pressure in molten 
layer 

Integrating equation (3) twice yields 

1 / dp\ldpl,  __1 +, F q 

v¢ = sign ~-- J0 
, , I q 0 - q  ldq  

x sign tq0 - r/)[ B--~I ) (24) 

where the first relation in equation (4) and a condition 
indicating the maximum velocity (i.e. dv¢/drl = 0) at 
r /=  r/0 are used. The velocity gradient dv¢/dq > 0 for 
r /< q0, while 3v¢/drl < 0 for ~/> q0. A longitudinal 
coordinate ~, exists between ff~ and ~2 such that 
dp/d~<O for ~ , < ~ < f f l  and dp/d~>O for 
~2 < ~ < ~,. Introducing the first relation in equations 
(5) into equation (24) the location of q0 is determined 

f i  " .In0-n Zdn = 0. (25) sign (r/o -- ~DI B---~0 

Substituting equation (24) into the continuity equa- 
tion (2), integrating with respect to ~/, and introducing 
the second relation in equations (4) leads to 

• / d p \  1 a I- 1+2. vldpl~ -] 
v , = s l g n ~ ) ~ L h  " xh ~ J (n ,O]  (26) 

where the function J yields 

J0/, ~) = J0 ( 0 - ~ )  sign (qo - ; )1B--~0  

(27) 

Integrating the second relation in equations (5) with 
respect to ~, substituting equations (26), and using the 
condition dp/d~ = 0 at x ,  = x(~,) leads to 

_ I t sign [Xh(O---X,]IX~h+~(O--X~+I [ ~ d(+p2 
P ---~ n v n 2n+  1 .~c: (v+l )  [x.S(1,0] h 

( ~ < ( < ~ ,  (28) 

were the critical location if, can be determined by 
substituting the boundary condition p = p~ at ~ = ~ 
into equation (28). This gives 

~ i  I " v + l  v + l  n slgn[xh(0--X.]IX~+'(0--X_. [ dC 
(v + 1)~[x~J(1, O]"h 2"+ l . = P2 --Pl. 

(29) 

3.2. Solution procedure 
The solution procedure is described as follows. 

(1) An approximate linear initial temperature 0l 
satisfied by 0w = f ( O ,  0, = 1 at the working surface is 
assumed• The Peclet number and shape of the working 
surface of the heater are specified. 
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(2) The location % is obtained from equation (25). 2 
(3) Heat flux distribution on the melting surface is 

calculated from equations (14) and (15). 
(4) Thickness of the molten layer is obtained from 

equation (9). 
(5) The critical tangential location x ,  is determined 

from equation (29). 
(6) Transverse and tangential velocities, and pres- 

sure are calculated from equations (26), (24) and (28), q t 
respectively. 

(7) The constant 0, is obtained by substituting 
equation (28) into equation (6). 

(8) An improved temperature profile of liquid is 
obtained by solving energy equation (7) subject to 
boundary conditions (8) and melting temperature at 
the melting surface. 

(9) Steps 2-8 are repeated until temperature pro- 0 
0 

files in the molten layer converge. 
(10) The parameter C in the function j is found 

from the solution of the inverse problem governed by 
equations (21) and (23). 2,0 

4. R E S U L T S  A N D  D I S C U S S I O N  

Among the numerous applications the contact melt- 
ing of rock and ice are of great interest. Physical 
properties of these materials are well documented and, 
for example, can be found in [3, 4]. Temperature- 
dependent conductivity k~ and Newtonian viscosity B 
can be represented by the equations kl = 1 + e0~ and 
B = exp (E/RT~), respectively. For  a molten rock they 
are approximately [4] : k~ = 1--k2.40~ "46 and 
B = exp (30036/T1). Flow indexes n = 0.8 and 1 are 
referred to the molten rock [16] and water, respec- 
tively. Even though numerical computations provided 
below are for rock and ice melting conditions, general 
conclusions can be drawn. 

4.1. Heat conduction in the surrounding solid 
Since the molten layer is very thin the shape of 

the melting surface is similar to that of the working 
surface. That is to say, the melting surface ~m equal 
to Zw with an accuracy of O(C~). Integrals over the 
generating curve of the melting surface in the equa- 
tions (12), (14), therefore, can be substituted by the 
integrals along the contour Fw. As a result, heat con- 
duction in the solid can be studied separately from 
heat transfer across the molten region. 

Heat flux distributions on the melting surface are 
presented in Fig. 2. Heat flux on an elliptical melting 
surface Fig. 2(a) are found to be in agreement with 
those obtained in [20] for a welding pool of an ellip- 
tical shape. For  the parabolic melting surface com- 
puted results coinside with analytical close-form solu- 
tion obtained in [21] by introducing parabolic 
coordinates. This confirms the accuracy of the bound- 
ary elements method used in present study. Solid and 
dashed lines in Fig. 2(b) represent heat flux dis- 
tributions on a toroidal melting surface that were 

1. b /o  - 1 

2. b /a  =, 2 

3. b / a  -= 5 

1 2 3 4 5 

(a) 

q 1.0 

0.0 
0.6 

X 

/ 

, H , , 
Z 0 -0.5 X -X ,  0.5 o Z o.6 

(b) 

Fig. 2. Heat fluxes along a melting surface of an elliptical 
shape: (a) generated by equation (x-x,)2/a2+z2/b2= 1 
and (b) along the melting surface generated by the circular 
curve with vertical parts for Pe = 5. Solid line, solution of 
equation (14) for ~b determined by modified Bessel function 
K0 ; dashed line, solution of equation (14) for ~b defined by 

equation (13). 

obtained when the fundamental solution ~b in equation 
(14) was determined by the modified Bessel function 
K0 and by equation (13), respectively. The generating 
curve of the melting surface is a half of the circle 
{ ( x - x , ) 2 + z  2 = 0.25 ; z < 0} with vertical straight 
line segments {x = x , - 0 . 5  ; x = x , + 0 . 5 ;  0 ~< z 
~< z0}. It can be seen that heat fluxes differ slightly 
only in vicinity of the ends of  generating curve. 
For  different shapes of heaters and Peclet numbers 
Pe> 1 numerical computations exhibit similar 
results. Therefore, the effect of axisymmetry is insig- 
nificant for toroidal surfaces and Peclet numbers 
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Fig. 3. The parameter Ch and Reynolds number as a function 
of flow index. 

Pe > I. As a result, a fundamental solution for a 2D 
flat model can be used for computations of heat flux 
and temperature in surrounding solid. 

4.2. Heat transfer hi the molten layer 
The ratio between the characteristic thickness of the 

molten layer and dimension of the heater is 
Ch = (Bo/w) l lo + 2,)[ lips~ (lp0]"/(2" + 1). The thickness of 
the molten layer therefore is decreased by reducing the 
viscosity, melting rate, density of solid, longitudinal 
location, and increasing the external force, and liquid 
density, respectively. Furthermore, a decrease in the 
flow index, n, reduces the thickness or parameter Ch, 
as shown in Fig. 3. The reason for this is that a 
decrease in the flow index reduces the viscosity and 
increases the velocity gradient near the wall. As a 
consequence, the thickness of the molten layer 
decreases and tangential velocity increases. The Reyn- 
olds number subsequently increases. The computed 
results show that the parameter Ch and Reynolds 
number for melting rock can be of the order of 10-l_ 
10 -2 and 10 -6 , respectively, for melting rock 
conditions. 

If working surface of the heater is isothermal and 
parabolic in shape, and the melt is Newtonian liquid 
with constant physical properties then simple ana- 
lytical solutions in closed form can be obtained [21]. 
Numerical results and simplified analytical solutions 
for distributions of temperature and heat flux, pres- 
sure, and thickness of the molten layer by using a 
mean and temperature dependent viscosities are pre- 
sented in Fig. 4. The molten layer is assumed to be a 
Newtonian fluid having a constant specific heat and 
conductivity. It can be seen that agreement between 
the numerical and analytical results is very good. 

In order to investigate the influence of temperature 
distribution 0w along the working surface Ew, a series 
of computations for different variations of tem- 
perature were carried out. Temperature on Zw was 
specified by the equation 0~w = 0,  + 4A0x 2 where A0 
is temperature difference along Ew between the stag- 
nation point ( = ( ,  = 0 and end point (1 of the work- 
ing surface. The heater is axisymmetric, without a 
hole in the center generated by curve Fw which is 
determined by the equation z = 10(x2-0.25) and 
0 ~< x ~< 0.5. The dimensionless total heat flow across 
the working surface that can be used as an effec- 
tiveness criterion is calculated from the formula 
Qw = Sz, qw dE. For example, values of total heat flow 
Qw, thicknesses of the molten layer at the stagnation 
point ( ,  and exit point (l, and parameter 0, for melt- 
ing rock conditions are listed in Table 1, respectively. 
The difference of temperature A0 in the case of rock 
melting varies from - 0 . 3  to +0.3 which corresponds 
to the maximum temperature variation around 330°C 
along the heating surface. It can be seen that the total 
heat flow from the working surface Qw decreases as 
A0 decreases. Hence the effectiveness of melting 
increases. In order to reduce dissipation of energy a 
concentration of heat near the leading edge of the 
working surface is required. However, the effec- 
tiveness increases slightly. On the contrary, the thick- 
ness of the molten layer is sensitive to the temperature 
variation. When the temperature difference A0 is nega- 
tive, the thickness of the molten layer at the exit point 
becomes small. It is undesirable, for instance, in 
themal drilling of rock. This is because the thickness 
of the molten layer along the walls of the well deter- 
mines the stability of the glass like a rim that forms 
after the melt is solidified. The temperature difference 
A0 along the working surface can be used as a con- 
trol parameter in order to obtain the required thick- 
ness of the molten layer near the exit point (~. 
Besides, it slightly increases the required total heat 
flow Qw. 

A sufficient thickness of the molten layer can also 
be achieved with the aid of supplementary vertical 
straight line segments in the generating line of the 
working surface. In order to determine the effective 
factor affecting the thickness of the molten layer, cal- 
culations were carried out for the elliptical heating 
surface with vertical supplementary parts of different 
lengths and temperature differences A0. The gen- 
erating curve was determined by the equation 
• (x, z) -- 0 where 

• (x,  z) = 

I 
f x - x , \  f z V 

x , - 0 . 5  -.~ x ~< x , + 0 . 5 ,  

x -  ( x , - 0 . 5 ) ;  O~<z~<zo; 

x - ( x , + 0 . 5 ) ;  O<~z<~zo. 

z ~< O; (30) 
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Fig. 4. Profiles of temperature and heat flux (a), and longitudinal variations of  pressure and thickness (b) 
predicted by simplified analytical (solid and dashed lines) and numerical (* and A) solutions for the molten 

layer of  ice : A,/~ = const. ; *,/~ = B0 exp (E/RT~). 

Table 1. Influence of  temperature difference along the working surface of  the heater on 
heat flow, temperature and thickness of  the molten layer (rock melting by the axi- 

symmetric heater without central hole) 

Pe A0 - 0 . 3  - 0 . 2  - 0 . 1  0 0.1 0.2 0.3 

Q,  3.42 3.43 3.45 3.47 3.48 3.50 3.53 
6 0, 0.42 0.34 0.27 0.21 0.17 0.14 0.12 

h,  0.3 0.24 0.19 0.15 0.12 0.1 0.08 
hi 0.9 1.04 1.25 1.54 1.92 2.39 2.9 

Qw 2.49 2.50 2.52 2.53 2.56 2.58 2.61 
12 0, 0.57 0.5 0.44 0.39 0.34 0.31 0.27 

h,  0.22 0.2 0.17 0.15 0.13 0.12 0.1 
hi 1.11 1.23 1.37 1.54 1.73 1.95 3.18 

Q,  2.30 2.31 2.33 2.35 2.37 2.39 2.41 
15 0, 0.65 0.59 0.53 0.48 0.43 0.39 0.36 

h ,  0.2 0.19 0.17 0.15 0.14 0.13 0.11 
hj 1.18 1.28 1.40 1.54 1.69 1.85 2.03 
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Fig. 5. Distribution of the molten rock layer thickness along the toroidal working surface of elliptical shape 
determined by equation (30) for Pe = 5. (1) A0 = 0, z0 = 3, Q, = 70 ; (2) A0 = 0.1, z0 = 0.9, Qw = 57.6 ; 

(3) A0 = 0.3, z0 = 0.3, Qw = 52.8. 

The temperature distribution is 

~ ® , + 2 A ® l x - x , I ,  

x , - 0 . 5 < x < x , + 0 . 5 ,  z < 0 ;  
O]w = .~ O , + A ® + A ® z  ; (31) 

/ 
0~<z:~<z0, x = x , + 0 . 5  

L o r x  = x , - 0 . 5 .  

The variations of  thickness of  the molten layer h(() 
for different Pc, A0 and z0 are presented in Fig. 5. The 
results show that art appropriate layer thickness can 
be attained with les,; energy consumption by increas- 
ing the temperature difference A0, rather than the 
vertical parts of  Ew. An increase of  A0, however, has 
its limitations. It cart induce strong overheating of  the 
upper parts of  the heater and finally cause damage. 
Increasing the thickness of  the molten layer by elon- 
gating the vertical straight line parts of  the heater does 
not  have this shortcoming, even though it requires 
higher energy consumption. Therefore, an appro- 
priate thickness of  the molten layer along the walls of  
the bore-hole can be achieved with the aid of  the 
corresponding temperature difference along the work- 
ing surface. It should be maintained below a limit 
0 w < 0ma x that is determined by the design of  the 
heater. If  the required thickness does not reached a 
further increase of  the molten layer, the thickness can 
be obtained by elongating the working surface. 

4.3. Solution of  the inverse problem in the heater 
Results of  the inverse problem solution governed 

by equations (21)-(23) are presented in Fig. 6, where 
the dashed and a solid lines denote heat fluxes on Ew 
required and calculated by the equation (21), 
respectively. Working surface was prescribed to 
be of  a parabolic shape generated by equation 
z = P[(x-x,)2+0.25)].  When the parameter C is 
found for the short heater (P = 2) a linear distribution 

1.9 

" . , \  

o . ,  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0.0 0.1 0.2 0.3 0,4 0.5 
X 

Fig. 6. Adjusted and computed (dashed and solid lines, 
respectively) heat flux distributions along the working sur- 
face of the heater. (1) C = 3.75,p = 2 ; (2) C = 2.47, p = 4. 

of  heat sources on the central line of  the heater pro- 
vides a good agreement between heat flux calculated 
by the equation (21) and required heat flux on the ~Tw 
(obtained from the solution of  heat transfer problem 
in the molten layer). In the case of  elongated heaters 
the linear distribution of  heat sources does not  provide 
the required heat fluxes. Therefore, more complicated 
multi-parametrical distributions should be chosen in 
order to attain better coinsideness. 

5. CONCLUSIONS 

(1) Heat  fluxes and temperature fields in the melt- 
ing solid and in the heater are determined by using a 
boundary elements method. The accuracy is con- 
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firmed by comparison with the available results for an 
elliptical shape of  the melting surface. For  an axi- 
symmetric, ring-shaped working surface and high 
Peclet numbers a 2D model  in Cartesian coordinates 
can be relevantly applied. 

(2) Computed  results reveal that there are two ways 
to control the thickness of  the molten layer. One is to 
change the length of  the heater, the other is to main- 
tain an appropriate temperature distribution along 
the working surface. If  the heater can not withstand 
high temperatures the former is preferable. Otherwise, 
the latter can be effectively used. 

(3) Solutions of  the inverse heat conduction prob- 
lem in the heater show that a linear heat source in a 
short heater can provide a required heat flux dis- 
tribution on the working surface. However,  different 
distributions of  the heat sources in the heater should 
be used for elongated heaters. 
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